Скажу несколько слов по книге Ли Смолин "Неприятности с физикой: взлет теории струн, упадок науки и что за этим следует".
Выходя за пределы теории струн (см. часть 3), обратимся к сюрпризам реального мира.
Цитата |
---|
В истории науки было множество примеров открытий, которые удивляли ученых, поскольку они не предугадывались теорией. Нет ли сегодня наблюдений, которые мы, физики, не запрашивали, которые не навлекли на себя теорию, – наблюдений, которые могли бы подвинуть физику в интересном направлении? Нет ли шанса, что такие наблюдения уже были сделаны, но проигнорированы, поскольку, если они подтвердятся, они могли бы помешать нашим теоретизированиям?
Ответ на эти вопросы: да. Имеется несколько недавних экспериментальных результатов, которые указывают на новые явления, непредвиденные для большинства струнных теоретиков и физиков, занимающихся частицами. Ни один полностью не установлен. ...
Начнем с космологической константы с целью представить темную энергию, ускоряющую расширение вселенной. ... эта энергия не была предугадана ни теорией струн, ни большинством других теорий, и у нас нет идеи, как установить ее величину.
Что характеризует космологическую константу, так это масштаб, который является масштабом расстояний, выше которых она искривляет вселенную. Мы можем назвать этот масштаб R. Он порядка 10 миллиардов световых лет или 10^27 сантиметров. Что является странным в космологической константе, так это что ее масштаб гигантский по сравнению с другими масштабами физики. Масштаб R в 10^40 раз больше размера атомных ядер и в 10^60 раз больше планковского масштаба (который составляет примерно 10-20 от размера протона). Так что логично поинтересоваться, не может ли масштаб R отражать некоторую совершенно новую физику. Хорошим подходом мог бы стать поиск явлений, которые происходят на том же самом громадном масштабе.
Происходит ли что-нибудь другое на масштабе космологической константы? Начнем с самой космологии. Самыми точными космологическими наблюдениями, которые мы имеем, являются измерения космического микроволнового фона. ... Картина этих флуктуаций дает нам важную путеводную нить к физике очень ранней вселенной. |
Итак, в поисках новых фактов и выхода из кризиса в физической теории обращаемся к космологии и тому самому CMB, которое так долго ранее обсуждалось на страницах этой темы.
Вспомним о спектре микроволнового излучения
В картине доминирует большой пик, за которым следуют несколько пиков поменьше. Открытие этих пиков является одним из триумфов современной науки. Они интерпретируются космологами, чтобы отметить, что заполнявшая раннюю вселенную материя звучала почти похоже на корпус барабана или на тело флейты. Длина волны, на которой вибрирует музыкальный инструмент, пропорциональна его размеру, и то же самое верно для вселенной. Длины волн резонансных мод говорят нам, насколько велика была вселенная, когда она впервые стала прозрачной: то есть, когда начальная горячая плазма перешла или «распалась» на отдельные царства вещества и энергии примерно через триста тысяч лет после Большого Взрыва; в это время микроволновое излучение и стало видимым. Эти наблюдения экстремально полезны в привязке параметров нашей космологической модели.
Другое свойство, которое мы видим в данных, заключается в том, что в самой большой длине волны содержится мало энергии. Это может быть просто статистическая флуктуация, поскольку эта область содержит незначительное число точек данных. Но если это не статистическая случайность, это может быть интерпретировано как указание на отсечку, выше которой моды возбуждаются намного меньше.
Интересно, что эта отсечка находится на масштабе R, связанном с космологической константой.