Выбрать дату в календареВыбрать дату в календаре

Страницы: 1 2 След.
Современные благотворители и меценаты – кто они?
Обновление исследования от команды MCM (март 2024 г.)

Мы продолжаем характеризовать биомаркеры рака легких, выявленные в проекте MCM1. Это обновление посвящено HSD17B11, гену, связанному с выживаемостью при раке легких. HSD17B11 представляет собой ген, кодирующий белок, относительно повсеместно экспрессирующийся в органах и тканях. Это короткоцепочечная алкогольдегидрогеназа, которая метаболизирует вторичные спирты и кетоны.

Проект: Картирование маркеров рака                             Опубликовано: 14 марта 2024 г.

Терминология

- Стероидогенез: процесс, посредством которого холестерин превращается в различные стероидные гормоны.
- Идиопатическая необструктивная азооспермия: наиболее тяжелый тип мужского бесплодия, характеризующийся малым объемом яичек и очень низкой концентрацией сперматозоидов, причина которого не установлена.

Фон

Идентификация молекулярных маркеров и их комбинаций (сигнатур) позволяет нам выявлять заболевание на более ранней стадии (диагностические сигнатуры) и стратифицировать пациентов на подгруппы на основе закономерностей прогрессирования заболевания (прогностические сигнатуры), что потенциально может привести к определению того, какие пациенты могут получить пользу от различных вариантов лечения (прогностические сигнатуры). . Проект Mapping Cancer Markers анализирует наборы данных с миллионами точек данных, собранных у пациентов с раком и саркомами, чтобы найти такие диагностические, прогностические и прогностические признаки.

С ноября 2013 года волонтеры World Community Grid пожертвовали проекту более 894 000 лет процессорного времени, помогая анализировать данные о раке и саркоме легких и яичников гораздо более тщательно, чем это было бы возможно в противном случае. Мы безмерно благодарны за эту постоянную поддержку.

Далее описывая 26 генов с наибольшим количеством баллов при раке легких, мы уже обсуждали VAMP1, FARP1, GSDMB, AHD6, IL13RA1, PCSK5 и TLE3 в предыдущих обновлениях MCM. Здесь мы излагаем информацию о HSD17B11. Важно отметить, что на данный момент между всеми этими белками существует сильная связь, как показано на рисунке 1. HSD17B11 является четвертым по количеству связанных белков в нашем списке, при этом FARP1, TLE3, PCSK5 являются более связанными.

Рисунок 1. Физические взаимодействия белков, связывающие 8 белков, на которых мы сосредоточились до сих пор (розовые узлы). Данные из нашей базы данных IID.

HSD17B11 Исследования

HSD17B11 — это ген, который кодирует белок, называемый гидроксистероид-17-бета-дегидрогеназа 11. Гидроксистероид-17-бета-дегидрогеназа 11 может превращать андростан-3-альфа,17-бета-диол в андростерон in vitro, что позволяет предположить, что он может участвовать в выработке андрогена.

Учитывая его структуру (рис. 2), HSD17B11 имеет четыре известных лиганда, которые могут с ним связываться, включая андростерон, глицерин, сульфат-ион и хлорид-ион.
Рисунок 2. Структура белка HSD17B11 (PDB).

Крупный метаанализ показал, что однонуклеотидные полиморфизмы в HSD17B11 в значительной степени связаны с мышечной массой тела [1]. Также было обнаружено, что HSD17B11 является потенциальным биомаркером ишемической болезни сердца [2] и идиопатической необструктивной азооспермии [3].

Было обнаружено, что HSD17B11 играет защитную роль при раке легких (рис. 3), как и другие гены, которые мы представили до сих пор.

Рисунок 3. а) Кривые выживаемости пациентов с низкой и высокой экспрессией HSD17B11 (KMplot). б) Еще более сильная связь обнаружена для аденокарциномы легких и в) для никогда не куривших.

Мы продолжили исследования, чтобы изучить связь между HSD17B11 и другими видами рака. Как показано на рисунке 4, при сравнении раковых тканей и нормальных тканей, HSD17B11 дифференциально экспрессируется при большинстве видов рака (обозначено красным текстом).

При большинстве видов рака его активность повышена, за исключением рака молочной железы, толстой кишки, плоскоклеточного рака легких, рака яичников, почек, щитовидной железы и матки. В литературе HSD17B11 связан с прогнозом рака простаты [4] и выживаемостью при раке поджелудочной железы [5].

Рисунок 4. Экспрессия HSD17B11 в нормальной и раковой ткани при нескольких типах рака. Красный текст представляет значительную разницу между экспрессией в раковой ткани по сравнению с нормальной тканью (TNMplot).

Если у вас есть какие-либо вопросы или комментарии, пожалуйста, оставьте их в этой теме, чтобы мы ответили!

Команда WCG
https://www.worldcommunitygrid.org/forums/wcg/viewthread_thread,46581_offset,0#695182

Хотите принять участие в распределенных вычислениях, тогда, Вам сюда:
https://boinc.ru
Современные благотворители и меценаты – кто они?
Конкурс вычислений Moonshoot

Мы рады объявить о конкурсе, поощряющем старшеклассников изучать науку о данных и распределенных вычислениях с использованием BOINC и World Community Grid.

Опубликовано: 22 февраля 2024 г.

Как мы отмечали в нашем информационном бюллетене за октябрь 2023 года, мы работаем над установлением более прочной связи со средними школами. Мы рады объявить о конкурсе, поощряющем старшеклассников изучать науку о данных и распределенных вычислений с использованием BOINC и World Community Grid.

Конкурс Computation Moonshoot призван помочь студентам внести свой вклад в реальные, полезные результаты для исследователей в захватывающей конкурентной атмосфере. Конкурс организован The Science Commons Initiative и пройдет с 25 марта по 7 мая 2024 года. Хотя основной конкурс открыт для всех средних школ США и их учащихся, мы надеемся, что это вызовет некоторый глобальный интерес.

Призы будут вручены школе, внесшей наиболее активный вклад, школе, вложившей больше всего времени на обработку, и школе с самым высоким соотношением активных участников к учащимся. Призы варьируются от научного оборудования до подарочных карт и студенческих стипендий.

Это соревнование — не первое соревнование по грид-вычислениям, проводимое на WCG.
В 2019 году Стокгольмская школа науки и инноваций в Швеции провела соревнование между 5 командами, вложившими более 25 лет ЦП и 45 945 результатов за один месяц в проекты MCM и MIP.

Еще один из наших партнеров по средней школе, средняя школа Сислера в Канаде, приняла участие в Compute for the Cure 2021, двухнедельном конкурсе пожертвований MCM, вернув 52 392 результата и заняв второе место в конкурсе. Они также провели свои собственные внутришкольные соревнования. Обе средние школы отметили, что соревнования предоставляют учащимся ценную возможность обучения и являются интересным способом мотивировать учащихся к использованию грид-вычислений. В эту растущую группу наших партнеров из средних школ входит средняя школа сообщества Бока-Ратон, которая создала клуб WCG и расширяет учебную программу по естественным наукам, изучая проекты WCG, программирование и высокопроизводительные вычисления.

Мы с нетерпением ждем конкурса Computation Moonshot и возможностей, которые он предоставит для обогащения обучения студентов. Регистрация на этот конкурс уже открыта. Для получения дополнительной информации о конкурсе и о том, как зарегистрироваться, посетите веб-сайт Computation Moonshoot. https://computationmoonshot.org/?page_id=16
https://www.worldcommunitygrid.org/about_us/article.s?articleId=793
https://www.worldcommunitygrid.org/about_us/article.s?articleId=787
https://www.worldcommunitygrid.org/about_us/article.s?articleId=601
http://thesciencecommons.org/
https://computationmoonshot.org/?page_id=16
https://www.worldcommunitygrid.org/images/prismic/WCG_Newsletter_Oct_2023.pdf

Хотите принять участие в распределенных вычислениях, тогда, Вам сюда:
https://boinc.berkeley.edu/wiki/Simple_view
https://boinc.berkeley.edu/download_all.php
https://boinc.ru
Ссылка на git-хаб, где лежат исходники программы-клиента BOINC.
https://github.com/BOINC/boinc
Современные благотворители и меценаты – кто они?
Обновление исследования от команды OPN (февраль 2024 г.)

Команда Open Pandemics выпустила новые рабочие модули, нацеленные на ДНК-полимеразу цитомегаловируса.

Проект: OpenPandemics - COVID-19                           Опубликовано: 14 февраля 2024 г.
https://www.worldcommunitygrid.org/research/opn1/overview.do

Терминология
- ДНК-полимераза: фермент, состоящий из нескольких субъединиц, который строит ДНК путем сборки нуклеотидов.

Фон
https://www.scripps.edu/

Ученые из Scripps Research проводят молекулярное моделирование, чтобы найти возможных кандидатов для разработки методов лечения вирусов, включая COVID-19. Это исследование требует огромных вычислительных мощностей для проведения миллионов смоделированных лабораторных экспериментов. Молекулы, идентифицированные как многообещающие кандидаты, затем проверяются в лабораториях сотрудниками команды OPN.

Обновление рабочего подразделения

Новые исследовательские подразделения нацелены на ДНК-полимеразу цитомегаловируса, распространенного вируса, который особенно вреден для беременных или людей с ослабленным иммунитетом. Цель состоит в том, чтобы идентифицировать малые молекулы, связывающиеся с одной из субъединиц полимеразы, предотвращая ее взаимодействие с другой субъединицей полимеразы и тем самым нарушая сборку функциональной полимеразы. Около 40 миллионов молекул энамина будут смоделированы для выявления кандидатов для исследования и оценки нашими сотрудниками.

Рисунок 1. Цитомегаловирусная инфекция пневмоцитов (автор изображения: доктор Йель Розен, США. Изображение доступно по лицензии Creative Commons Attribution-Share Alike 2.0 Generic Licence)
https://creativecommons.org/licenses/by-sa/2.0/

Хотите принять участие в распределенных вычислениях, тогда, Вам сюда:
https://boinc.berkeley.edu/wiki/Simple_view
https://boinc.berkeley.edu/download_all.php
https://boinc.ru
Ссылка на git-хаб, где лежат исходники программы-клиента BOINC.
https://github.com/BOINC/boinc
Современные благотворители и меценаты – кто они?
«Он скучал и плесневел» как один человек решил восстановить уникальный советский телескоп и сделал это.

Последние шесть лет Сергей Назаров, научный сотрудник Крымской астрофизической обсерватории и известный популяризатор науки, восстанавливает забытый телескоп «Синтез». В День российской науки мы пообщались и выяснили, что им движет.

В 1978 году Крымская астрофизическая обсерватория ввела в строй новый, совершенно передовой по тем временам телескоп «Синтез» (он же «АСТ-1200») на продвинутой экваториальной монтировке вилочного типа. Оптика сделана по кассегреновской схеме с особой «изюминкой» — тонким ситалловым сегментированным главным зеркалом. Это уникальное зеркало состояло из шести подвижных шестиугольных сегментов и одного центрального неподвижного. Главная особенность — в возможности автоматического удержания заданного положения зеркал и способности частично компенсировать турбулентность в земной атмосфере благодаря быстрой подвижке каждого зеркала по двум осям.

Эксперимент ставился, чтобы выяснить принципиальную возможность создания более крупных зеркал, чем наиболее значительный на то время шестиметровое зеркало телескопа БТА в САО. Причем с компенсацией дрожания атмосферы — наиболее серьезной проблемы для крупных и длиннофокусных телескопов. Однажды Сергей Назаров решил восстановить уникальный научный инструмент.

Первые телескопы и первые проблемы

Когда в мире построили первые крупные телескопы, выяснилось, что они страдают от одного серьезного недостатка — зеркало слишком тяжелое. Оно и должно быть жестким, отсюда и большой вес. Если начать поворачивать телескоп в нужном состоянии, зеркало начнет гнуться, потеряет свою точность и качество изображения будет плохое.

Но затем ученые придумали, как избавиться от этого недостатка. Если делать зеркало из отдельных маленьких кусочков и собрать его, то оно получится большое, но легкое и с нужной жесткостью. И тут возникает новая проблема — как управлять этими сегментами.
Вместе с компьютерами в 70-80 гг. появилась такая возможность (конечно, самые первые системы управления еще не были компьютерные, но уже электронные). В США повелось делать круглые зеркала, потому что они дешевле, а в СССР — шестигранники. Их проще подогнать друг к другу с гораздо меньшими потерями по свету — получается гораздо меньше зазоров. Конечно, оба подхода имеют право на жизнь.

Научный эксперимент

Наш телескоп «Синтез» заработал в 1978 году и как раз на нем отрабатывалась технология создания сегментированной оптики — как все настраивать, чтобы получить качественное изображение, и юстировать эти кусочки, чтобы достичь максимального качества. В 90-х на нем тестировали технологию адаптивной оптики, когда пытаются подвижками сегментов компенсировать влияние атмосферы. Но оказалось, что это не очень хороший вариант. Сегмент все-таки великоват для таких задач и фрагменты не двигаются как единое целое. По сути, качество изображения не улучшилось.

Тут как раз распался Советский Союз. И, если сегментированное зеркало наши ученые смогли успешно реализовать, то его адаптивную оптику — нет. В итоге телескоп забросили, он стоял, плесневел, ржавел и скучал.

С 1990 до февраля 2018 года телескоп находился на консервации. Но удалось договориться с администрацией Крымской астрофизической обсерватории, и меня назначили ответственным за его восстановление. Процесс пошел — вот уже шесть лет мы его ремонтируем.

Что уже удалось сделать?

Сейчас нам удалось восстановить механику телескопа, сделать электронику, подключить все к компьютеру и наладить систему управления. Телескоп можно наводить на цель — мы делаем открытия и попутно собираем деньги на главную оптику, потому что шестигранники устарели. Да и изначально они были сделаны не суперкачественно. Все-таки телескоп был не научный, а экспериментальный — задача была научиться управлять сегментами.

Мы их сохраняем как музейный экспонат, а вместо них в трубу ставим главное зеркало телескопа, сделанное, скажем так, на основе цельного зеркала, но по современным технологиям. Поэтому у нас будет хорошее качество изображения при небольшом весе зеркала. Все-таки сегменты дают максимальную эффективность на крупных телескопах — 4-5 метров, 10, 20 и больше.

В октябре 2020-го состоялся первый свет 350-миллиметрового телескопа «на спине» «Синтеза».

И мы уже наблюдали на «Синтезе» послесвечение исключительно гамма-всплеска в октябре 2022 года. Его обнаружили Swift, Fermi, MAXI/GSC, INTEGRAL (SPI-ACS), Konus-Wind, the
IPN, AGILE/MCAL, SolO/STIX, SRG/ART-XC, CALET and GRBAlpha. Гамма-всплеск оставил послесвечение сразу в нескольких диапазонах ЭМ-спектра. Погоды, увы, не было, но на следующую ночь нам удалось вытащить его между облаков в r-фильтре.
https://vk.com/sintez_crao?w=wall-162860439_4511

Вот как он выглядел в рентгеновском свете:
Изображение в гамма-лучах доступно по ссылке.
https://gcn.gsfc.nasa.gov/notices_s/1126853/BA/

И это не все открытия. Мы ждем новых, а нас ждут экзопланеты.

Почему это для тебя так важно?

С одной стороны — мне нравится этим заниматься, ведь я отдаю дань нашим предкам и завершаю то, что они не доделали. С другой — восстанавливаю телескоп как научный инструмент, действительно крупный по нашим российским меркам. В наших хороших астроклиматических условиях он даст очень хорошие научные результаты.

Что теперь можно делать на «Синтезе»?

Получать художественные снимки объектов глубокого космоса, искать кометы, астероиды и переменные звезды. Еще есть возможность наблюдать послесвечения гамма-всплесков, сверхновые и новые звезды, а также искать новые туманности.

«Синтез» ожил, пришел в себя, открыл глаза и увидел Вселенную. А, значит, наши надежды, планы и самые безумные мечты становятся реальностью.

Следить за восстановлением телескопа и помочь проекту можно по ссылке.
https://vk.com/sintez_crao
Современные благотворители и меценаты – кто они?
Я тоже
Современные благотворители и меценаты – кто они?
Дорогие друзья, мы получили результаты для различных целей SARS-CoV-2. Вычисления продолжаются, и мы хотим узнать ваше мнение о следующей цели. Проголосовать за одного из них можно до 5 февраля 2024 года.

Дальнейшие исследования основной протеазы SARS-CoV-2 (3CLpro)
Это важнейшая терапевтическая мишень против SARS-CoV-2. 3CLpro (цистеиновая протеаза; EC 3.4.22.69), в частности, имеет решающее значение для расщепления полипротеинов коронавируса с образованием зрелых неструктурных белков, которые сами по себе необходимы для механизмов репликации вируса. Нам все еще нужно гораздо больше исследований по этой цели в поисках новых, более мощных ингибиторов.

Гликопротеин вируса Эбола (GP).
Вирус Эбола является опасным патогеном для человека, и эта мишень может стать идеальным примером для исследования сценария разработки лекарств типа ИПП. Гликопротеин EBOV (GP) является единственным экспрессируемым вирусом белком на поверхности вириона и имеет решающее значение для прикрепления к клеткам-хозяевам и катализа слияния мембран.

Коронавирус синдрома острой диареи свиней (SADS-CoV PLpro).
Эта цель позволит нам изучить дизайн на нескольких связанных вирусных мишенях. Коронавирус синдрома острой диареи свиней (SADS-CoV), недавно появившийся кишечный коронавирус, считается связанным с синдромом острой диареи свиней (SADS), который нанес значительный экономический ущерб свиноводству. Патоген указывает на потенциал перехода к хозяину.

https://www.sidock.si/sidock/forum_thread.php?id=268#2178

Голосование: https://www.sidock.si/sidock/poll_vote.php?id=65b3a7251b64817062725491122
Современные благотворители и меценаты – кто они?
Установка программного обеспечения Boinc

Скачать для Windows
Чтобы внести свой вклад в World Community Grid, при иследовании Рака, Онкологии, Диабета и других болезней, установите программное приложение BOINC.

1. Найдите БОИНК
Найдите загруженный установщик BOINC. Местоположение будет зависеть от вашего браузера, а имя вашего установщика будет содержать разные символы в конце имени файла.

2. Установите
Дважды щелкните, чтобы запустить установщик, а затем следуйте появляющимся подсказкам.

3. Начните вносить свой вклад

Поздравляем, теперь вы подключены к World Community Grid и готовы внести свой вклад! Просто продолжайте использовать свое устройство, как обычно, и World Community Grid использует вашу свободную энергию для научных исследований.

Загрузить программное обеспечение для Windows.
https://www.worldcommunitygrid.org/download
https://boinc.berkeley.edu/wiki/Simple_view
https://boinc.berkeley.edu/download_all.php
https://boinc.ru
Современные благотворители и меценаты – кто они?
Уважаемые участники SiDock@home.

Мы успешно достигли 21 важной вехи в нашей продолжающейся инициативе по открытию лекарств, и этот сильный, открытый и поддерживаемый сообществом проект по открытию лекарств продолжается.

В последнее время наши исследования были рутинными: виртуальный скрининг в одной и той же библиотеке на плеяду мишеней, связанных с короной. Однако эти усилия имеют решающее значение для развития наших исследований.

В настоящее время мы готовим публикации для двух наших завершенных задач (3CLpro и PLpro) и готовим почву для будущих целей по борьбе с наркотиками (здесь мы также планируем создать пул, в котором вы, участники, поможете нам принять решение о предстоящих целевых работах).

И последнее, но не менее важное: мы благодарим всех, кто пожертвовал криптовалюту или деньги. Сумма пожертвований на данный момент составляет 639 евро и 12 140 Gridcoin. Мы планируем использовать их для закупки препаратов и проведения скрининга in vitro. Как всегда, мы благодарны всем вам за ваш вычислительный вклад и обсуждения!

Мы с нетерпением ждем дальнейшей работы над SiDock@home.
С Рождеством всех и всего наилучшего Всем!
С наилучшими пожеланиями,
Наталья, Марко, Чртомир и Иней

Хотите принять участие в распределенных вычислениях, тогда, Вам сюда:
https://boinc.berkeley.edu/wiki/Simple_view
https://boinc.berkeley.edu/download_all.php
https://boinc.ru
Ссылка на git-хаб, где лежат исходники программы-клиента BOINC.
https://github.com/BOINC/boinc
Современные благотворители и меценаты – кто они?
Новогоднее соревнование на boincstats будет по отечественному проекту распределённых вычислений Gerasim@Home

Присоединяйте Ваши команды для увеличения вычислительных мощностей: https://www.boincstats.com/stats/challenge/team/chat/1119
Современные благотворители и меценаты – кто они?
Есть, например, гражданская благотворительность для науки, участие посредством предоставления своего ПК для расчетов ученым.

SETI@home – Проект по поиску внеземного разума с помощью анализа радиосигналов с радиотелескопа Аресибо. Поиск пульсаров.

Rosetta@home - Изучает строение белков

LHC@home – Платформа, созданная учеными ЦЕРН для помощи в разработке и эксплуатации Большого адронного коллайдера.

Проект Большого Адронного Коллайдера (LHC) - ускорителя частиц в CERN, Европейской Организации Ядерных Исследований, самой большой в мире лаборатории физики элементарных частиц. Это самый мощный инструмент, когда-либо построенный, для исследования поведения элементарных частиц. LHC@home выполняет моделирование для улучшения проекта LHC и его датчиков. Boinc.ru

MilkyWay@home – Изучает историю нашей галактики, ищет загадочную темную материю, для этого он картографирует и анализирует движение групп звезд по орбите млечного пути.

Einstein@home – Основная цель проекта зарегистрировать гравитационное излучение вращающихся нейтронных звезд (пульсаров)

WorldCommunityGrid - Проект включает в себя исследования ВИЧ-СПИД, рак, тропические и забытые болезни, солнечную энергию, чистую воду и многое другое.

GPUGrid.net - Новые биомедицинские программные приложения в вычислительной биологии для биомедицинских научных исследований.

Cosmology@Home - Цель состоит в том, чтобы найти модель, которая лучше всего описывает нашу Вселенную, и найти диапазон моделей, которые соглашаются с доступными данными астрономической физики элементарных частиц.

CAS@Home размещается в вычислительном центре института физики высоких энергий (ИФВЭ), Китайской академии наук, для китайских ученых с проектами изучения структуры белков, нанотехнологии, рака геномики и физики высоких энергий.

DHEP использует генетический алгоритм в коэволюционной настройке для синтеза будущей сверхнадежной электроники, такой как те, которые используются в автономных транспортных средствах, электростанциях, медицинском оборудовании, аэрокосмической промышленности. Они приобретают все более важное значение, поскольку все больше человеческих жизней зависит от хорошо функционирующего оборудования.

Присоединяйтесь! www.Boinc.ru
Страницы: 1 2 След.
Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее