В пермо-карбоновый этап развития, предшествовавший триасу, Земля в своем осевом вращении стабилизировалась на отклонение экватора от эклиптики около 15-17º, что соответствует наклону земной ост около 73-75º, т.е. близко к условно вертикальному. Такой наклон оси соответствует максимальному сближению Земли и Луны на расстояние до 58-60 земных радиусов R. При таком сближении максимально замедляется осевое вращение Земли из-за приливных взаимодействий. Приливы и циркуляция океанических вод и атмосферы в экваториальной зоне достигают большой интенсивности. Временной интервал событий отвечает верхнему карбону – нижнему триасу, примерно на протяжении 50 млн. лет. Эти космические события имели последствия.
1. Замедление вращения Земли привело к некоторому уменьшению полярного сжатия геоида (эллипсоида вращения) с соответствующими глобальными деформациями земной коры: сжатием в экваториальной зоне и расширением в высоких широтах.
2. Малый наклон земной оси вызвал снижение потока солнечного тепла к полюсам, охлаждению полярных областей. В низких широтах, в экваториальной зоне, напротив, возросла интенсивность солнечной радиации, увеличились приземные температуры, установился очень жаркий климат.
3. В результате сближения с Луной возросла сила приливов. Произошел сгон океанических вод от полюсов к экватору. В высоких широтах увеличились площади суши (регрессия). Аналогичные процессы произошли в атмосфере с увеличением ее мощности на экваторе.
4. Значительное повышение температуры земной поверхности и атмосферы в экваториальной зоне резко усилило испарение вод Мирового океана. Усилилась атмосферная конвекция и адвекция. Огромные объемы теплого влажного воздуха перемещалась в высокие широты, где формировались полярные шапки и ледовые щиты, достигшие средних широт. Свидетельством тому стали реликты масштабного (глобального) гондванского пермокарбонового оледенения.
5. Огромные объемы пресной воды законсервировались в ледниковых полярных щитах. На земном шаре установился контрастный аридный климат: холодный в высоких широтах и жаркий в экваториальной зоне Большие площади заняли холодные и жаркие пустыни. Формируются красноцветны и эвапориты.
6. В покрывных ледниках вместе с пресной водой консервируются значительные объемы свободного кислорода. Бескислородная атмосферная обстановка седиментации благоприятствует накоплению черных сланцев. Бескислородная атмосфера приводит к вымиранию животного мира палеозоя.
7. Аридный климат уничтожил растительность верхнего палеозоя. Кислород перестал воспроизводиться, в то время как объемы СО2 возрастали. Несмотря на высокое содержание СО2 в атмосфере, карбонатный седиментогенез ограничен дефицитом кальция и магния в речных стоках.
Описанная ситуация продолжается вплоть до среднего триаса. Примерно во второй половине перми начинается цикличное расхождение Земли и Луны, достигающее максимума в средине юрского периода 66 R. Ускоряется осевое вращение Земли, возрастает сжатие геоида с обратными к предыдущим деформациями земной коры. Наклон земной оси увеличивается до 60-65º с соответствующим обогревом полярных областей и таянием ледниковых покровов. Уровень Мирового океана поднимается, повсеместно происходят трансгрессии моря, многочисленные несогласия в триасовых формациях, столь характерные для этого периода. Начинается мезофитная эра растительности и возрождение животного мира. Впереди времена динозавров.
Сходные космические и геологические события происходили на рубеже протерозоя и кембрия, а также в девоне. Эпизоды того же геологического содержания можно отметить в кайнозое на примере Великого неоген-четвертичного оледенения (начало 3,3-3,2 млн. лет назад).
Небесно-механические циклы в системе Земля-Луна-Солнце, на которых основывается изложенная концепция геологических событий, имеет волновой гармонический характер развития во времени. Развитие геологических событий следует этому же порядку (3).
Литература
1. Авсюк Ю.Н. Эволюция системы Земля-Луна и ее место среди проблем нелинейной геодинамики. Геотектоника, 1993, №1.
2. Егоров А.И. Глобальная эволюция торфо-угленакопления. Ростов-на-Дону, 1997.
3. Кичигин Л.Н. Гелиолицентрические принципы глобального тектогенеза. Ростов-на-Дону, 2013.
4. Кичигин Л.Н. Тектонические условия траппового магматизма. Ростов-на-Дону, 2013.
5. Потапов И.И. Геотектоника – философия геологии. Ростов-на-Дону, 1996.
6. Ронов А.Б., Хаин В.Е. История осадконакопления в среднем и верхнем палеозое в связи с герцинским этапом развития земной коры. Советская геология, Сб. 58, 1957.
7. Синицын В.М. Палеогеография Азии. М., 1962.