Портал функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям.

Большой адронный коллайдер: модернизация близка к завершению

Кандидат физико-математических наук Алексей Понятов

Идут ремонтные работы в туннеле Большого адронного коллайдера. Фото: Anna Pantelia. CERN.

В середине июля 2014 года на ускорительном комплексе Большого адронного коллайдера (Large Hadron Collider, LHC) в Центре европейских ядерных исследований (ЦЕРН) после почти полуторагодового перерыва снова начались эксперименты.

Столь длительный перерыв связан с тем, что с 14 февраля 2013 года на комплексе идут работы по его модернизации и ремонту, которые должны завершиться в 2015 году. В ходе этих работ заменят почти 1000 км повреждённых радиацией кабелей, поменяют и модернизируют значительную часть узлов ускорителей (некоторые работают с 1959 года), детекторов и электроники, капитально отремонтируют систему вентиляции.

Главная задача работ — устранение конструктивных недостатков LHC, которые привели к аварии при его запуске в 2008 году и задержали на год ввод коллайдера в строй. Причинами аварии стали дефект электрического соединения, из-за которого возник дуговой разряд, и неудачно спроектированная система безопасности электропитания. После ремонта исследования пришлось вести с частицами, ускоренными до энергий, не превышающих 8 ТэВ (1 ТэВ = 1012 эВ), при проектной мощности коллайдера 14 ТэВ. Это существенно изменило планы работ на LHC, хотя и на таких энергиях удалось получить немало выдающихся результатов. Например, обнаружить неуловимый бозон Хиггса (см. «Наука и жизнь» № 10, 2012 г., статья «Долгожданное открытие: бозон Хиггса»).

Модернизация должна довести энергию столкновений частиц практически до проектной. Работа на мощности 13 ТэВ позволит повысить точность измерений и, возможно, получить новые результаты. В два раза должна возрасти и так называемая светимость коллайдера — число столкновений частиц в единицу времени. Чем их больше, тем чаще происходят те редкие события, которые интересуют исследователей.

За полтора года, прошедшие со дня остановки LHC, вскрыли все сверхпроводящие магниты в 27-километровом туннеле коллайдера, проверили все 10 170 соединений и более половины их перепаяли, чтобы они надёжно проводили ток до 13 000 А. Установлено 27 000 шунтов, которые отведут часть тока, если какое-либо соединение потеряет сверхпроводящие свойства. Это позволит избежать повторения ситуации 2008 года.

В настоящее время первый из восьми секторов LHC уже охлаждают до рабочей температуры 1,9 К (–271оС). Запустить коллайдер планируют в январе 2015 года, в феврале — марте его протестируют на максимальной энергии пучков. Однако светимость будет наращиваться постепенно, так что полноценные эксперименты начнутся лишь во втором полугодии.

Помимо LHC в систему коллайдера входит так называемый инжекционный комплекс — несколько ускорителей меньшего размера, предназначенных для предварительного ускорения частиц перед их впрыскиванием («инжекцией») в кольцо LHC и для проведения самостоятельных экспериментов. Ускорители комплекса протестируют и запустят в 2014 году. На ускорителях Linac2 (линейном) и PS Booster (PSB, бустер протонного синхротрона) работы уже завершены, что позволило в июле ввести в строй протонный синхротрон (PS), который использует протоны, предварительно ускоренные Linac2 и PSB.

В конце июля возобновила работу установка ISOLDE на пучке протонов от PSB. В этом эксперименте получают и исследуют радиоактивные ядра в интересах широкого круга наук — от атомной и молекулярной физики до биофизики и астрофизики.

Протоны из PS направляются на мишень, где они производят вторичные частицы, например нейтроны, используемые в первую очередь в эксперименте nToF по изучению их взаимодействия с ядрами и в ряде других. Эти исследования важны для изучения свойств ядер, звёздного термоядерного синтеза, использования ускорителей для управления ядерными реакторами и применения вызванных нейтронами реакций в ядерных технологиях, включая трансмутацию ядерных отходов, реализацию вечной мечты алхимиков о превращении одного элемента в другой.

PS будет использован и для работ по проекту AIDA, в котором разрабатывают новые детекторы для ускорителей. Их будут проверять в условиях, аналогичных существующим внутри ускорителей. Для этого строят новые установки IRRAD и CHARM, которые войдут в строй в середине сентября.

Протоны от PS получает и второй по величине ускоритель комплекса — суперпротонный синхротрон (SPS), пуск которого ожидается в середине октября.

В конце августа начал работу замедлитель антипротонов (AD), на котором проводят эксперименты по изучению антиматерии. На сентябрь запланирован эксперимент CLOUD, исследующий связь космических лучей с образованием облачности. В нём физику ускорителей высоких энергий впервые используют для изучения атмосферы и климата.

До конца года должны закончиться и работы на всех четырёх основных детекторах LHC (ATLAS, CMS, ALICE и LHCb). Но уже сейчас проходит тестирование детекторов с помощью частиц космических лучей.

Пауза в работе LHC дала физикам возможность сосредоточиться на анализе накопленных данных. В день остановки коллайдера ЦЕРН объявил, что его центр обработки данных за последние двадцать лет зарегистрировал более 100 ПБ (1 петабайт = 1015 байт) физических данных. Это эквивалентно 700 годам видео высокого разрешения. Более половины их принадлежит LHC, который производит до 25 ПБ информации в год.

Новые результаты исследований все коллаборации LHC обнародовали на 37-й Международной конференции по физике высоких энергий (ICHEP), проходившей 2—9 июля в Валенсии (Испания). Были представлены наиболее полные, точные и всесторонние измерения массы топ-кварка, бозона Хиггса и короткоживущих адронов, их время жизни и схемы распада, результаты поисков суперсимметрии и тёмной материи, новые измерения сильных взаимодействий с участием W- и Z-бозонов (которые важны для поиска новых явлений), ряд новых результатов по исследованию кварк-глюонной плазмы, асимметрии материи — антиматерии.

Исследователи с энтузиазмом ожидают начала очередного трёхлетнего периода работы LHC, после которого планируется ещё одна его модернизация, чтобы к 2020 году увеличить светимость коллайдера в 10 раз. Они продолжат поиски частиц тёмной материи, дополнительных измерений пространства Минковского, явлений, выходящих за рамки Стандартной модели, экспериментально проверят различные теории, в первую очередь теорию суперсимметрии, попытаются узнать причину отсутствия антиматерии во Вселенной. Всё это позволит не только лучше понять, как устроен наш мир, но и, возможно, прояснить вопросы происхождения Вселенной.

Читайте в любое время

Журнал добавлен в корзину.
Оформить заказ

Другие статьи из рубрики «Научные центры»




Портал журнала «Наука и жизнь» использует файлы cookie. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie на вашем устройстве. Подробнее