Портал функционирует при финансовой поддержке Федерального агентства по печати и массовым коммуникациям.

НОБЕЛЕВСКИЕ ПРЕМИИ 1999 ГОДА

МАТЕМАТИЧЕСКИЕ ОСНОВЫ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Нобелевскую премию прошедшего года по физике получили теоретики из Голландии Герард Хуфт и Мартин Велтман. Они впервые надежно показали, что теория может заранее предсказать свойства даже еще не открытых частиц. Их выводы подтвердили эксперименты, проведенные на ускорителях Европы и Америки.

Работы нобелевских лауреатов относятся к весьма сложной и глубокой теории микромира, именуемой теорией электрослабого взаимодействия. В кратком сообщении о сути этой теории говорить не будем, а интересующихся читателей отсылаем к публикациям журнала (см. "Наука и жизнь" №№ 1, 11, 12, 1996 г., №№ 2, 3, 1997 г.). Важнейшим результатом исследований Хуфта и Велтмана можно считать теоретическое предсказание свойств неуловимой частицы - так называемого бозона Хиггса. Без нее теория элементарных частиц оказывается неполной, и надежды на ее "поимку" физики связывают с Большим протонным коллайдером (LHC), который заработает в Центре европейских ядерных исследований (ЦЕРНе, Женева) в 2005 году.

ХИМИЯ ФЕМТОСЕКУНДНЫХ РЕАКЦИЙ

Химические реакции могут проходить с различными скоростями: чем сильнее нагреты вещества, тем быстрее они провзаимодействуют. Простую зависимость скорости реакции от температуры вывел в конце XX века шведский химик Сванте Аррениус. Однако при очень сильном нагреве реакции проходят столь быстро, что о процессах на молекулярном уровне можно было судить только по косвенным признакам и теоретическим расчетам. Молекула успевает распасться на компоненты, или наоборот: отдельные атомы могут собраться в молекулу за ничтожно малый промежуток времени - 100-200 фемтосекунд (1 фс=10-15 сек). Динамика таких сверхбыстрых явлений долго оставалась одной из фундаментальных проблем современной химии.

В конце 80-х годов сотрудник Калифорнийского технологического института Ахмед Зивэйл начал цикл работ по исследованию сверхбыстрых реакций, инициируемых лазерным импульсом фемтосекундной длительности. Первым стал эксперимент по изучению распада молекулы цианида иода: ICN→ I + CN, происходящего за 200 фемтосекунд. При изучении диссоциации йодистого натрия NaI →Na + I лазерный импульс сжимал ионную пару Na+I- до расстояния 0,28 нанометра (10-9 м) между атомами, создавая соединение [NaI]*. Предполагалось, что его атомы скрепляет ковалентная связь, при которой оба атома охватывает общее электронное "облако". Однако выяснилось, что свойства соединения меняются из-за быстрых колебаний атомов. Когда расстояние между атомами возрастает до 1-1,5 нм, они превращаются в ионы, а при сближении действительно возникает ковалентная связь. В средней же точке колебательного цикла, на расстоянии около 0,69 нм, возникает очень высокая вероятность, что молекула вернется в свое основное состояние или распадется на атомы иода и натрия. Затем последовали многочисленные эксперименты по изучению органических соединений, позволившие обнаружить не известные ранее стадии реакций синтеза и распада сложных молекул.

Увидеть их позволила виртуозная техника исследований. Мощный лазерный импульс вызывает какие-то изменения в состоянии молекул. Возвращаясь в исходное состояние, они испускают излучение, по спектру которого можно судить о протекающих процессах. При этом необходимо регистрировать импульсы излучения длительностью 10-10 - 10-14 секунды.

За работы в области фемтохимии А. Зивэйл был удостоен Нобелевской премии 1999 года по химии. Конечно, его вклад в мировую науку трудно переоценить. Столетиями химики пользовались терминами вроде "активация" или "переходное состояние", не видя, что же в действительности эти явления собой представляют. Теперь такая возможность у химиков появилась.

Следует заметить, однако, что первые работы в области фемтосекундных процессов начались в нашей стране, и значительно раньше (см. "Наука и жизнь" № 9, 1995 г.). В 70-х годах была открыта и детально исследована реакция распада многоатомных молекул под действием мощного инфракрасного лазерного импульса. Частота излучения подбиралась так, что импульс вызывал резонансные колебания атомов в молекуле, приводящие к ее разрыву. Позднее эти работы, проведенные под руководством доктора физико-математических наук В. Летохова, легли в основу принципиально нового метода разделения изотопов. Сегодня технология лазерного разделения успешно разрабатывается во многих странах.

Герард Хуфт.
Мартин Велтман.
Ахмед Зивэйл.

Обеспечим библиотеки России научными изданиями!


Случайная статья


Другие статьи из рубрики «Люди науки»