№08 август 2025

Портал функционирует при финансовой поддержке Министерства цифрового развития, связи и массовых коммуникаций.

Новая жизнь фотокатода

Доктор физико-математических наук Олег Терещенко, профессор РАН, заведующий лабораторией физики и технологии гетероструктур Института физики полупроводников им. А. В. Ржанова СО РАН. Материал подготовила Наталия Лескова

Привычный прибор ночного видения позволил новосибирским физикам создать первые в мире источник спин-поляризованных электронов на основе фотокатода и спиновый триод, а также уникальные фотоприёмники для отечественного космического проекта «Спектр-УФ».

Фотокатоды цезий-йод — ключевая часть электронно-оптических преобразователей для «глаз» обсерватории «Спектр-УФ». Фото Надежды Дмитриевой.

Современная полупроводниковая электроника, в середине XX века пришедшая на смену вакуумным электронным лампам, привела к огромным достижениям и дала нам массу возможностей. Однако уже достаточно давно стало понятно, что её прогресс не бесконечен. Рано или поздно, а точнее уже скоро, она подойдёт к своему пределу. Но что придёт ей на смену? В 1980-х годах появились полупроводниковые устройства с вакуумным зазором вместо диэлектриков. Это даже породило выражение «Back to the Future» («назад в будущее»). Примерно в то же время родилась и спинтроника, активно развиваемая последние 30 лет (см. статью: А. Понятов «Спин: ориентация в будущее», «Наука и жизнь» № 4, 2016 г. — Прим. ред.). Дело в том, что электрон помимо таких интуитивно понятных характеристик, как масса и заряд, обладает спином — собственным магнитным моментом. Одна из основных задач спинтроники — научиться управлять электронами через их спин. Расчёты показывают, что это должно быть значительно менее энергозатратно и гораздо быстрее, чем в традиционной полупроводниковой электронике, основанной на управлении зарядом. Наша научная группа сумела объединить эти два подхода и начала развивать новое направление, которое назвали вакуумной спинтроникой. А оттолкнулись мы от уже привычного фотокатода, основного элемента, например, такого устройства, как прибор ночного видения.

Работа многих фотоэлектронных приборов связана с фотоэффектом — хорошо известном из школьного курса физики физическом явлении, объяснённом Эйнштейном, за что он был удостоен Нобелевской премии по физике в 1921 году. Внешний фотоэффект состоит в том, что фотоны вырывают с поверхности металла или полупроводника электроны, и таким образом те становятся свободными. Почти вся физика приборов, о которых мы будем говорить, основана на этом эффекте для полупроводников. В случае вакуумных приборов электроны из фотокатода выбрасываются в окружающий вакуум.

Сложность в том, что не так просто вырвать электрон из твёрдого тела, необходимо преодолеть работу выхода материала. А для этого требуется относительно большая энергия — 5—6 электронвольт (эВ), что соответствует ультрафиолетовому излучению. Отчасти по этой причине в нашей обыденной жизни практически отсутствуют свободные электроны — электронный газ. Для значительного снижения работы выхода и получения эффективного фотоэмиттера (в идеале на каждый поглощённый фотон из него должен вылетать электрон) на поверхность полупроводника наносят или адсорбируют буквально один монослой электроположительных атомов щелочных металлов, толщина которого составляет всего 1 нанометр...

Читайте в любое время

Другие статьи из рубрики «Инструменты науки»

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее