Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

НОВОЕ ПОКОЛЕНИЕ ДИСПЛЕЕВ ТЕСНИТ «ПЛАЗМУ»

Татьяна ЗИМИНА.

Органический светодиод, включающий десять функциональных слоёв, работает от обычной батарейки.
Органический светодиод, включающий десять функциональных слоёв, работает от обычной батарейки.
Микрофотография наноразмерного органического кристалла, так называемого J-агрегата, полученная методом атомно-силовой микроскопии. Высота изображённого кристалла составляет всего лишь один нанометр.
Микрофотография наноразмерного органического кристалла, так называемого J-агрегата, полученная методом атомно-силовой микроскопии. Высота изображённого кристалла составляет всего лишь один нанометр.

Учёные Института физической химии и электрохимии им. А. Н. Фрумкина РАН разработали многослойные электролюминесцентные органические структуры для гибких дисплеев. Тонкоплёночные полупроводниковые системы на основе новых проводящих органических материалов называют также OLED-структурами (от английского Organic Light-Emitting Diode). Они могут использоваться в создании экранов телевизоров, ноутбуков, мобильных телефонов — это следующее поколение экранов после жидкокристаллических и плазменных.

Специалисты ИФХЭ РАН получили ряд новых органических систем на основе электрофосфоресцентных металлокомплексов, которые выступают в качестве молекулярных светоизлучающих центров, то есть служат «сердцем» излучающих структур. Были разработаны принципиально новые полимерные электролюминесцентные системы, светоизлучающие слои которых содержат наноразмерные органические кристаллы, известные как J-агрегаты. Эти частицы обеспечивают необычные оптоэлектронные свойства OLED-структур.

Чтобы получить тончайшие нанометровые слои, разогретые частицы осаждали в вакууме на прозрачную подложку, покрытую проводящим слоем. Общая толщина OLED-структур не превышала 100 нм. Учёные изучили их оптоэлектронные свойства, получили спектры излучения и значения квантовой эффективности, исследовали электронно-дырочную проводимость.

Исследование показало, что синтезированные органические металлокомплексы обладают повышенной подвижностью носителей зарядов. Это означает, что на их основе можно получать электролюминесцентные устройства с повышенной эффективностью, то есть большей световой мощностью при постоянном электрическом потенциале. Кроме того, синтезированные люминофоры имеют узкие полосы испускания в видимом диапазоне света (10—20 нм, например, для красного, синего и зелёного света), что обеспечивает очень насыщенный, яркий цвет излучения. Нелинейные оптические свойства, проявляемые новыми композитами, делают их перспективными для получения на их основе многофункциональных устройств, например таких, как оптические компьютеры, в которых информация передаётся световыми пучками (фотонами).

Если к многослойной OLED-структуре приложить напряжение в несколько вольт, затем пустить через неё очень слабый электрический ток, рабочий светоизлучающий органический слой начинает эффективно излучать свет. Именно поэтому изделия, созданные на основе органических электролюминофоров, в десятки раз экономичнее тех, в которых используются, например, жидкие кристаллы. Яркость свечения полученных в ИФХЭ РАН слоистых структур превышает 5000 кд/м2 (кд — кандела, единица силы света). Для сравнения: жидкокристаллические дисплеи имеют яркость не более 500 кд/м2. Кроме того, OLED-экран намного легче и тоньше жидкокристаллического, обладает лучшей цветопередачей, имеет гораздо более широкий угол считывания. Возможно получение плоских дисплеев на гибкой полимерной основе.

Однако пока OLED-структуры не могут быть запущены в производство — они боятся влаги и кислорода, и учёным ещё предстоит решить эту проблему. Кроме того, их производство остаётся достаточно дорогим.


Случайная статья


Другие статьи из рубрики «Вести из институтов, лабораторий, экспедиций»