Бином Ньютона и треугольник Паскаля

Борис РУДЕНКО.

Наука и жизнь // Иллюстрации
Блез Паскаль (1623— 1662).
Исаак Ньютон (1643—1727).
Треугольник Паскаля.

Сегодня, как и лет тридцать-сорок назад, абитуриенты на вступительных экзаменах в вуз традиционно опасаются вытянуть билет с вопросом о биноме Ньютона. (Автор формулы — великий английский физик, математик, астроном и философ сэр Исаак Ньютон.) Дело не только в том, что формула кажется сложной. Изучение её то включали в программу средней школы, то выводили за рамки основного курса, но в серьёзных вузах экзаменаторы спрашивали и продолжают спрашивать о биноме Ньютона.

На самом деле бояться тут особенно нечего. Бином Ньютона — формула разложения произвольной натуральной степени двучлена \( (a+b)^n \) в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» \( (a+b)^2 \) и «куба суммы» \( (a+b)^3 \), но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности. Чтобы не совершить ошибку и применяется формула бинома Ньютона:

\[ (a+b)^n = a^n + \frac{n}{1!}a^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \ldots + b^n. \]

В более общем виде формула коэффициентов в биноме записывается так:

\[ C_{n}^{k} = \frac{n!}{k!(n-k)!} \]

где k - порядковый номер слагаемого в многочлене.

Напомним, что факториал — произведение натуральных чисел от 1 до n, то есть \( 1*2*3*\ldots*n \) — обозначается n!, например, \( 4! = 1*2*3*4 = 24 \).

Запомнить формулу действительно непросто. Но попытаемся её проанализировать. Видно, что в любом многочлене присутствуют an и bn с коэффициентами 1. Ясно также, что всякий иной член многочлена выглядит как произведение определённых степеней каждого из слагаемых двучлена (a+b), причём сумма степеней всегда равна n. Например, в выражении \[ (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 \] сумма степеней сомножителей во всех членах равна трём (3, 2+1, 1+2, 3). То же самое справедливо и для любой другой степени. Вопрос лишь в том, какие коэффициенты следует ставить при членах.

Видимо, для того чтобы облегчить труд школяров и студентов, великий французский математик и физик Блез Паскаль триста пятьдесят лет назад придумал специальный инструмент для определения этих самых коэффициентов — «треугольник Паскаля».

Строится он следующим образом.В вершине треугольника пишем 1. Единица соответствует выражению \( (a+b)^0, \) поскольку любое число, возведённое в нулевую степень, даёт единицу. Достраивая треугольник, ниже пишем ещё по единице. Это коэффициенты разложения того же двучлена, возведённого в первую степень:\( (a+b)^1 = a+b. \) Идём дальше. Стороны треугольника образуют единицы, а между ними — сумма двух единичек, находящихся сверху, то есть 2. Это и есть коэффициенты трёхчлена «квадрат суммы»:

\[ a^2 + 2ab + b^2. \]

Следующий ряд, как и предыдущий, начинается и заканчивается единицами, а между ними — суммы цифр, находящихся сверху: 1, 3, 3, 1. Мы получили коэффициенты разложения « куба суммы ». Ряд коэффициентов двучлена четвёртой степени составят 1, 4, 6, 4, 1 и так далее.

Для примера с помощью треугольника Паскаля разложим в многочлен сумму двучленов в шестой степени:

\[ (a + b)^6 = a^6+6a^5b + 15a^4b^2+20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6. \]

Всё очень несложно и запоминается на всю жизнь. Кстати, самостоятельно вспомнить и вывести формулу бинома Ньютона, нарисовав на черновике треугольник Паскаля, тоже намного проще.

Некоторые историки науки приписывают Блезу Паскалю авторство не только треугольника, позволяющего находить биномиальные коэффициенты, но и самой формулы бинома. Они считают, что Паскаль вывел её несколько раньше Ньютона, а тот лишь обобщил формулу для разных показателей степеней.

Другие статьи из рубрики «Математические досуги»

Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее