Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

«Искусственный разум» подвержен предрассудкам

Обучаясь человеческому языку, компьютерные программы перенимают вместе с ним и наши культурные стереотипы.

Человеческий мозг ищет ассоциации между словами, основываясь на значении этих слов. Ассоциации могут быть как очевидными, так и не очень, например, при слове «роза» у кого-то в голове всплывет не только «аромат», «цветок» и прочие приятные вещи, но и «боль» – если для человека шипы розы оказались важнее ее запаха, а для кого-то цветок вообще может быть предвестником неприятностей.

 Однако, если отвлечься от индивидуальных особенностей и личного опыта, то в целом у слов есть достаточно устойчивые «свои» связи, которые мы даже не всегда осознаем и которые можно обнаружить с помощью специального теста на скорость ассоциаций: чем прочнее в голове сидит какая-то ассоциация, тем быстрее человек отреагирует на то или иное слово, связанное с другим. Так, в связи с «цветком» самыми быстрыми ассоциациями будут слова, обозначающие что-то приятное, напротив, «оружие» быстрее попадает в отрицательное понятийное окружение. Такие ассоциативные тесты могут много чего рассказать социологам: например, в США среди ассоциаций к «оружию» часто возникают афроамериканцы, тогда как белые люди обычно ассоциируются с безопасными и безвредными объектами.

Исследователи из Принстона разработали похожий тест, но только для машин. Наверно, сейчас уже ни для кого не секрет, что существуют алгоритмы, позволяющие машине разговаривать с человеком, и некоторые люди, бывает, часами сидят в сети, переругиваясь с лингвистическим роботом (правда, не очень понятно, говорит ли это о достоинствах робота, или же указывает на некоторые, скажем так, умственные особенности его собеседника).

Обеспечим библиотеки России научными изданиями!

Но, когда машину обучают словам, то их значения ей объясняют не через соответствия слов каким-то объектам. Вместо этого машине дают кусок текста из интернета, который она анализирует на предмет того, какие слова встречаются рядом друг с другом часто, а какие – редко. Анализ довольно сложен, тем не менее, с его помощью машина понимает, что слова «лед» и «пар» имеют большее отношение к слову «вода», нежели, например, к слову «мода».

Однако интернет заполнен словами, которые пишутся теми же людьми и которые стоят рядом, подчиняясь тем же человеческим ассоциациям. Так что стоит ли удивляться тому, что, как пишут авторы работы в Science, у лингвистических роботов связи между словами оказались те же, что и у людей: цветы и музыкальные инструменты машина употребляла в связке с приятными словами, насекомые и оружие – с неприятными.

То же самое касалось социальных групп: имена, свойственные белым, ассоциировались машиной с положительными вещами, тогда как имена черных оказывались связаны со словами с отрицательной окраской. И то же самое было с молодыми и старыми: имена стариков несли, если можно так выразиться, неудовольствие, от имен молодых же исходили лишь приятные ощущения. И то же самое – с мужчинами и женщинами: к «мужчинам» тяготели, например, «математика», «физика» и вообще науки, «женщины» же оказались в одной связке с разнообразными искусствами, и целым рядом «женских профессий», таких, как гигиенист и библиотекарь.

То есть машина, манипулирующая языком, оказалась подвержена тем же психологическим стереотипам, что и человек: убежденность в том, что наука – не женское дело, называется сексизмом – и мы видим это в машинных ассоциациях, убежденность в том, что черные – это всегда опасно, называется расизмом – и мы видим это в машинных ассоциациях, убежденность в том, что возрастной работник по определению хуже молодого, называется эйджизмом – и мы видим это в машинных ассоциациях.

С другой стороны, если речь идет о человеке, не стоит забывать, что имеются в виду именно неявные связи, когда сам человек мало задумывается о том, какие слова и как у него связаны, и если его спросить напрямую о том, что он думает, к примеру, о женщинах в науке, то он ответит, что вполне признает их вклад в научное знание и всячески приветствует их участие в исследованиях. С третьей стороны, неизвестно, как поведут себя в будущем такие неявные ассоциации и не станут ли они явными.

Впрочем, в данном случае нас больше интересует не столько люди, сколько машины. Как пишет портал LiveScience, сами авторы признают, что такие программы, которые обучаются человеческому языку, становятся в итоге своеобразным слепком нашей культуры, со всеми предрассудками и среднестатистическими эмоциями: «цветок – это прекрасно, а черные – это опасно». Слепок, возможно, несколько упрощенный, и касающийся только отдельных стран; хотя очевидно, что если бы программа обучалась русскому или китайскому, то и тогда бы она обзавелась какими-нибудь характерными ассоциациями, просто своеобразие таких ассоциаций было бы другим.

Но, так или иначе, в таком виде искусственный интеллект выглядит просто продолжением обычного, человеческого, пусть и работающего намного быстрее – и, повторим, странно было бы ожидать чего-то иного. Напоследок не откажем себе в удовольствии напомнить, что в 1971 году великий писатель-фантаст Станислав Лем рассмотрел очень похожую проблему в рассказе «Ананке», в котором человек, занимавшийся тренировкой бортовых компьютеров космических кораблей, сумел заразить эти компьютеры собственным психическим расстройством, что в итоге привело к катастрофе.

Автор: Кирилл Стасевич

Источник: Наука и жизнь (nkj.ru)

Статьи по теме