Портал создан при поддержке Федерального агентства по печати и массовым коммуникациям.

ТРИНАДЦАТЫЙ ЗАОЧНЫЙ ЧЕМПИОНАТ РОССИИ ПО РЕШЕНИЮ ГОЛОВОЛОМОК

Журнал "Наука и жизнь" в тринадцатый раз проводит заочный чемпионат по решению головоломок. Все участники, правильно решившие приведенные задачи, получат приглашение на очный чемпионат России, который состоится летом в Москве. Решения в произвольной форме отправляйте до 31 марта 2007 года на адрес редакции. Просьба самостоятельно подсчитать и написать свой результат в каждой задаче.

1. 2007 ТРЕУГОЛЬНИКОВ

Проведите на плоскости несколько отрезков, чтобы образовалось 2007 различных треугольников.

Пример 1: 10 отрезков образуют 35 различных треугольников.

Пример 2: 2009 отрезков образуют 2007 треугольников.

Ваша задача - обойтись минимальным количеством отрезков.

Оценка: 50 баллов за лучшее решение, 45 - на один отрезок больше и т.д. Если на рисунке не 2007 треугольников, результат не засчитывается.

2. 2007 ПУТЕЙ

В любом прямоугольнике на клетчатой сетке рассмотрим все пути, которые идут из левого верхнего угла в правый нижний. Двигаться разрешается только вправо и вниз по сторонам клеток. Отметим некоторые узлы сетки - через них путь проходить не может.

Пример: из левого верхнего угла сетки 2x3 в правый нижний ведут четыре пути. Если бы не было отмеченного узла, то общее количество путей было бы равно 10.

Убедитесь, что в квадрате 9x9 можно провести 48 620 таких путей. Ваша задача - отметить несколько узлов, чтобы число путей было 2007.

Оценка: 40 баллов за любое решение, 50 - если к тому же будет наименьшее количество отмеченных узлов.

3. ПЕНТАПАРКЕТ

Пентатреугольники - это набор из двадцати пятиугольников, каждый из которых разбит на пять треугольников. Некоторые треугольники - черные, а некоторые - белые. При этом использованы все возможные сочетания черного и белого цветов. Разместите элементы в приведенной форме; каждый элемент можно переворачивать или поворачивать на 180 градусов.

Задание состоит из двух пунктов, которые выполняются независимо:

А. Добейтесь, чтобы было как можно больше изолированных одна от другой черных областей.

Б. Добейтесь, чтобы одна из черных областей имела максимально возможную площадь. Площадь - это число треугольников, из которых состоит фигура.

Пример:

В приведенном примере образовалось 17 черных областей. Площадь наибольшей области - 9. Сумма по обоим пунктам - 26.

Оценка: 50 баллов за наибольшую сумму по обоим пунктам, 45 - за следующую и т.д.

4. РАЗБИЕНИЕ КВАДРАТА

Квадрат 5x5 расположен в клетчатой плоскости:

Проведите несколько отрезков с концами на границе квадрата в узлах сетки, чтобы квадрат разбился на максимальное количество частей, причем все они должны быть разной площади.

Пример: три отрезка разбивают квадрат 4x4 на шесть частей, все части различной площади:

Оценка: 50 баллов за лучшее решение, 45 - за следующее и т. д.

5. КОЛЬЦО ПЕНТАМИНО

Кольцо пентамино - это такое расположение двенадцати элементов на плоскости, когда каждый имеет общую границу только с двумя соседними, а остальных элементов не касается даже углом.

Элементы могут быть повернуты и перевернуты.

Составьте кольцо пентамино, в котором сумма длин границ между элементами была бы наибольшей. В нашем примере сумма длин общих границ (эти отрезки выделены жирно) равна 30.

Оценка: 50 баллов за лучшее решение, 45 - за следующее и т. д.


Случайная статья


Другие статьи из рубрики «Логические игры. Головоломки»