Углеродные мячики помогут энергетике

Молекулы фуллерена делают полимерные изоляционные материалы более стойкими к высокому напряжению.

В 1985 году химики впервые синтезировали футбольный мяч. Он состоял из 60 атомов углерода, соединенных в объемную геометрическую фигуру, образованную правильными пяти- и шестиугольниками. Эту молекулу назвали фуллереном, и вот уже тридцать лет ее пристально изучают в лабораториях. Химики научились делать самые виртуозные трюки с углеродным мячиком – закреплять на его поверхности различные молекулы, помещать внутрь него атомы металлов, даже показали, что на основе фуллерена можно сделать солнечные батареи. В каждой научной статье, посвященной фуллерену, ученые заявляли, что его можно использовать в самых разнообразных областях, но до реального применения дело так и не доходило. Фуллерен оставался занятной игрушкой в руках исследователей. Однако сейчас появился реальный шанс для молекулярного мячика оказаться полезным человечеству.

Молекула фуллерена С60, образованная атомами углерода. Фото: Digital Art/Corbis.
Разрез высоковольтного кабеля. В центре находится металлический провод, по которому протекает электричество. Провод окружен слоями изоляции, основной внутренней (белый слой) из полиэтилена, и наружной (черный тонкий слой). Фото: Carolina Eek Jaworski.
Электрический разряд, пробивший изоляцию, оставляет после себя характерный след в виде дерева. Молекулы фуллерена не дают вырасти таким губительным для полимеров деревьям. Фото: Jason Corneveaux/Flickr.

Шведские исследователи из Технического университета Чалмерса доказали, что с помощью фуллерена можно повысить стойкость изоляции, которая применяется для изготовления высоковольтных кабелей. Пока не наступила эра беспроводного электричества, самым надежным способом передачи энергии на расстояния остается обычный кабель. От различных электростанций к потребителям тянутся километры линий электропередач. Для питания большинства бытовых устройств используется переменное напряжение в 220 вольт. В промышленном оборудовании часто применяется напряжение 380 вольт. И хотя и то, и другое напряжение опасно и может быть даже смертельно, оно относится к классу низковольтного.

Дело в том, что для передачи энергии на большие расстояния требуются высокие напряжения – сотни тысяч вольт. Например, для передачи электроэнергии от электростанций Сибири к промышленным предприятиям на Урале в 80-х годах прошлого века была построена линия электропередач ультравысокого напряжения – до 1,1 миллиона вольт. Высокое напряжение приходиться использовать, чтобы уменьшить потери при передаче электричества по проводам: чем выше напряжение, тем меньше потери энергии по пути от электростанции до потребителя.  

Существуют воздушные линии электропередач – это неизолированные провода, висящие на столбах и мачтах. Там, где их использовать невозможно, прокладывают кабельные линии. Кабель можно проложить под землей или под водой. В кабеле металлический провод, по которому проходит ток, окружен слоем изолятора – непроводящего материала. Для производства высоковольтных кабелей применяют изоляцию из полиэтилена, того самого полимера, из которого сделаны обычные упаковочные пакеты. Но изоляционные возможности полиэтилена не безграничны: если превысить определенный предел, то произойдет пробой и кабельная линия целиком выйдет из строя. А замена кабеля, проложенного под землей или под водой – дело хлопотное.

Так при чем же тут углеродные футбольные мячики? Оказалось, что если в полиэтилен добавить молекулы фуллерена, то его изоляционные качества возрастают. Кабель с модифицированной фуллереном изоляцией выдерживает более высокое напряжение, чем обычный – на 26% выше. А это означает, что по нему можно передать на 26% больше энергии. Чтобы добиться такого эффекта, шведские химики создали изоляционный материал, в котором на один килограмм полиэтилена приходится один грамм фуллерена. У фуллерена весьма своеобразные электронные свойства. Он может захватывать высокоэнергетические электроны, которые разрушают изоляционные свойства полиэтилена. Фуллерен принимает на себя такие электроны, спасая полимер от возможного пробоя. Пусть это открытие не из тех, что совершают переворот в энергетике, но в промышленности увеличение эффективности на каждый процент позволяет сэкономить тонны материалов и мегаватты мощности.

Фото: Corbis, Flickr.

По материалам: Phys.Org  

Автор: Максим Абаев


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее