Благородное дело для благородных металлов

Исследователи из Института физической химии и электрохимии им. А.Н. Фрумкина РАН синтезировали наночастицы, с помощью которых можно лечить рак.

Ядро композитных наночастиц диэлектрическое. Оно может состоять из оксида кремния (кремнезёма) или полистирольного латекса. Оболочка же – металлическая, из золота или серебра. Такие наноструктры интересны своими необычными оптическими плазмонными свойствами.

Наука и жизнь // Иллюстрации

Явление плазмонного резонанса было открыто в 1980-е годы в Калифорнийском технологическом институте (США) в группе под руководством Г. Этуотера (Harry A. Atwater). Суть явления – возникновение резонансного взаимодействия между световыми волнами, направленными на поверхность раздела между металлом и диэлектриком, и осциллирующими (под действием света) электронами на поверхности металла. То есть поверхностные электроны начинают колебаться в такт с колебаниями электромагнитного излучения (света), в результате чего возникают поверхностные плазмоны – волны плотности электронов.

Изменение соотношения размера сферического диэлектрика и толщины золотого (серебряного) слоя позволяет менять длину волны резонансного поглощения энергии. Таким образом, можно получать наносферы, избирательно поглощающие волны разной длины – от синего края видимого света до 1000 нм (ближней инфракрасной области).

Способность композитных наночастиц к избирательному поглощению световых волн позволяет, в частности, использовать их для лечения опухолей. В злокачественное новообразование можно вводить плазмонные частицы – либо с кровотоком, либо с помощью антител, затем в место локализации опухоли через кожу направляют луч инфракрасного лазера. Резонансное поглощение энергии ИК-луча наносферами разогревает новообразование так, что раковые клетки погибают, при этом здоровая ткань остается нетронутой.

Перед исследователями из Института физической химии и электрохимии РАН стояла задача получения наночастиц с серебряной или золотой оболочкой, максимум плазмонного поглощения которых лежит в инфракрасном диапазоне 700-1000 нм.

Конструирование таких наночастиц исследователи осуществляли в три этапа. Сначала они синтезировали диэлектрические ядра диаметром 90-450 нм из кремнезема. Затем осаждали на них затравочные наночастицы серебра или золота, и, наконец, выращивали сплошной слой благородного металла заданной толщины. Ученым удалось отработать методики первого и второго этапов конструирования плазмонных частиц, кроме того, они опробовали новый способ укрупнения затравочных частиц серебра на поверхности диэлектрических ядер, в результате чего была получена «почти сплошная» оболочка заданной толщины. Как показали спектральные исследования, полученные наносистемы обладают весьма интенсивным пиком плазмонного поглощения в ИК-области. Теперь ученым предстоит «довести до ума» третий этап конструирования плазмонных наноструктур.



На фото: Затравочные частицы металла на поверхности диэлектрических ядер.

Автор: Татьяна Зимина


Портал журнала «Наука и жизнь» использует файлы cookie и рекомендательные технологии. Продолжая пользоваться порталом, вы соглашаетесь с хранением и использованием порталом и партнёрскими сайтами файлов cookie и рекомендательных технологий на вашем устройстве. Подробнее